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1|Introduction    

Fuel prices are highly volatile, creating significant challenges and uncertainties for the global economy. 

gasoline is a strategic product in the household goods basket. Whether households like it or not, it affects 

them [1]. The fluctuation in gasoline prices effectively influences society's welfare level [2], [3]. In other words, 

the volatility of gasoline price has two effects; the first effect is to affect the price of transportation, and the 
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Abstract 

Conventional gasoline price can affect the government and society as a strategic commodity in the community. 

Conventional gasoline price fluctuations have economic, political, social, cultural, and environmental effects. Thus, 

the prediction of its volatility is essential but there is not any study to examine the price fluctuations. This study aims 

to hybridize and propose different Garch models based on two distributions and various algorithms in machine 

learning, such as random forest, ridge regression, support vector regression (SVR), and elastic-net for predicting 

weekly gasoline price volatility. The results depict Garch and GJRgarch models based on t-student distribution can 

predict volatility. The combination of ridge regression and GJRgarch model can better predict volatility for the seven-

step-ahead. The RMSE scale has been used to compare results that the scale value is 0.01475 in the hybrid method. 

In fact, combining the ridge regression with t-student-GJRgarch model has the slightest error prediction or the most 

accuracy among different Garch models and machine learning algorithms.   

Keywords: Garch models, Machine learning, Gasoline price, Volatility, Distribution. 

mailto:dastam66@gmail.com
https://doi.org/10.22105/tqfb.v2i1.48
http://www.tqfb.reapress.com/
mailto:roshanpour_reza@alumni.iust.ac.ir
mailto:parsanejad@iust.ac.ir
mailto:soryaasgari@yahoo.com


 Roshanpour et al. | Trans. Quant. Fin. Bey. 2(1) (2025) 30-42 

 

31

 

  second effect is to increase the price of other goods, and therefore, inflation enlarges [4]. Also, gasoline price 

shocks can change one-year household inflation expectations [5]. It can affect the consumption of society 

and even the policies of policymakers and investors [6]. 

In this context, research has been performed on the long-run relation between gasoline price and other 

factors, including taxation, exchange rate, and crude price variation by the NARDL model [7], [8]. Also, Error 

Correction Models (ECM) have been utilized to predict retailed gasoline prices in China from 2019 to 2050 

based on international crude oil prices [9]. Another study examined price transmission from crude oil to 

gasoline [10]. The hybrid method introduced by Escribano and Wang [11] contains random forest and 

cointegrated with international oil prices and exchange rates to weekly predicted gasoline prices. Moreover, 

considering asymmetry with structural beaks was examined in the Russian gasoline market, and the results 

revealed no asymmetry between the gasoline prices and the crude oil prices in the long run [12].  

Regarding causality and volatility spillovers, Hammoudeh et al. [13] have investigated petroleum prices, 

gasoline, and heating oil in different locations and obtained results demonstrating the cointegration tests of 

each of them offer that spot and futures contracts suggest little benefits for long-run commodity portfolio 

diversification. In this regard, it is vital to forecast conventional gasoline prices accurately. However, no 

studies examine the volatility of traditional gasoline prices. Most studies have investigated the volatility of 

other commodities, including crude oil price and gas. Several articles have addressed just modeling and 

forecasting oil prices and tried to increase the prediction accuracy by various methods [14–16]. Regarding the 

new method of predicting, a comparison has also been performed between AdaBoost-LSTM and AdaBoost-

GRU to make better forecasting performance for oil price prediction, which the AdaBoost-GRU is superior 

to predict [17]. Another research utilized the MRN networks to predict, and results showed that this method 

could be flexible for forecasting at various horizons [18].  

Regarding optimization algorithms, the LSTM approach based on the Salp Swarm Algorithm  (SSA) was 

utilized to predict [19]. Also, a dynamic ensemble learning based on the nondominated sorting genetic 

algorithm II was used to calculate a prediction for crude oil [20]. In summary, by reviewing energy prices, 

including natural gas, crude oil, electricity, and carbon in the systematic decade review, the researches are as 

follows: to hybridize basic model, data cleaning method, and optimizer [21]. Garch models have performed 

different studies under different distributions, including the volatility of the S&P 500 index and the evaluation 

of daily returns in the Istanbul stock exchange by Garch et.al methods with ANN [22], [23].  

This paper's innovation is forecasting the volatility of weekly gasoline prices using the family of Autoregressive 

Conditional Heteroscedasticity (ARCH) models based on two distributions and various machine learning 

algorithms. In other words, this paper aims to fill the gap in the research on gasoline price volatility. 

Since fluctuation is an unobservable variable, it has to be estimated, and then conditional variance or 

fluctuation is combined into machine learning algorithms as an input. To address the volatility of gasoline 

prices, different models of Garch have been utilized, such as GARCH, GJRGARCH, and EGARCH [24–

26]. The remainder of this paper is organized as follows. Section 2 presents the description of data and the 

statistical characteristics of sample data. Section 3 discusses a general description of GARCH classes and 

explains various algorithms in machine learning. Section 4 contains the results, and the final section, Section 

5, includes some concluding remarks.  

2|Data 

The data in this research consists of 1932 weekly price observations of weekly U.S. Gulf coast conventional 

gasoline regular spot price FOB (dollars per gallon) from 1986/6/6 to 2023/9/6. The data has been 

downloaded from the U.S. energy information admiration. Descriptive statistics for the conventional gasoline 

price have been summarized in Table 1. It shows a significant difference between the maximum and minimum 

values, which depict high volatility in the series. The mean and the corresponding data variance are small, but 

the kurtosis in the table is so high that the price distribution is not normally distributed. Also, the Jarque-Bera 
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  test is rejected because the probability of the null hypothesis of normality in the data distribution is less than 

0.05.  

Table 1. Descriptive statistics for conventional gasoline price. 

 

 

 

 

 

 

  

 

We also assessed the data graph, and the skewness is positive in Fig. 1. It demonstrates a red curve when the 

data are not distributed symmetrically to the left and right sides of the mean on a bell curve. In other words, 

the distribution is positively skewed when its tail is more pronounced on the right side than on the left. 

Fig. 1. The graph of descriptive statistics. 

We applied the Augment Dickey-Fuller (ADF) test to examine the unit root test and study stationary data. 

According to the ADF test, ProbProb. > 0.05, and the null hypothesis of stationary is rejected Table 2. In 

other words, the ADF test's p-value is more than the significant level (0.05), which the null hypothesis will 

reject. Therefore, outputs infer that the time series is not stationary, and it has to take the first difference to 

stationary the data. 

Table 2. Stationary test. 

 

 

 

Fig. 2 shows that the raw data are not stationary, and Fig. 3 represents the raw data after the first difference. 

 

 

Descriptive Statistics Value 

Mean 1.332370 

Median 1.104500 

Maximum 4.253000 

Minimum 0.277000 

Std. Dev. 0.844510 

Skewness 0.686776 

Kurtosis 2.346002 

Jarque-Bera 186.3060 

Probability 0.000000 

 T-Statistic Prob.* 

Augmented diskey-fuller test statistic -0.057134 0.9521 
Test critical values 1% level -3.433542  

5% level -2.862836  
10% level -2.567507  
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Fig. 2. The raw data of gasoline price (none-stationary). 

Fig. 3. The raw data of gasoline price (stationary with taking the first difference). 

 

3|Methodology 

3.1|Garch Models 

The purpose of the garch model is to model the variance when the variance of the residuals is not constant 

in a sequence of values. The fundamental assumption of a linear regression model is equal variance, but this 

assumption is rejected in different models. The behavior of values is non-linear, chaotic, and dynamic. The 

conditional variance equations of the three models have been described in Eqs. (1)-(3). In each equation, σ̂t
2 

refers to the conditional variance, εt−1 is the term of the error of the first lag, and α0, αi, βj, γi are the 

parameters to be estimated from the maximization of the sample log-likelihood function. 

3.1.1|GARCH (p,q) 

σ̂t
2 is the conditional variance to which a squared ARCH (εt−1

2 ) is added. In other words, the conditional 

variance of the variable depends on the previous lags and the squared lag residuals. The Garch model has 

some limitations because the parameters must be positive in the conditional equation, and ∑ αi
p
i=1 + ∑ βj

q
j=1  

are expected to be less than one [27]. 

3.1.2|GJR-garch (p,q) 

Where dt−1 is a dummy variable: 

σ̂t
2 = α0 + ∑ αi

p

i=1

εt−1
2 + ∑ βj

q

j=1

σj−1.
2  (1) 

σ̂t
2 = α0 + ∑ αiεt−i

2p
i=1 + γiεt−i

2 dt−1 + ∑ βj
q
j=1 σ̂t−j

2 , (2) 
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And γ refers to the coefficient that measures the impact of news. The rest of the parameters in the equation 

remain the same as those of the GARCH model. 

3.1.3|EGARCH (p,q) 

εt−1 is the term of the error of the first lag. Unlike the Garch model, the EGarch model has no restrictions 

[28]. In the equation, γk shows the leverage effects that depict the asymmetry of the model. If γk ≠ 0, the 

effect is asymmetric, and if γk = 0, the effect is symmetric. In this regard, if γk < 0, it shows the existence of 

a leverage effect. It means that bad news reinforces the volatility. Conversely, if γk > 0, it indicates the 

presence of leverage effect, and it denotes that negative shocks at time t−1 have a weaker impact on the 

variance at time t than positive shocks. 

3.2|Gaussian Distribution 

When estimating Garch models, the Gaussian or normal distribution is used. One must maximize the log-

likelihood function to estimate the conditional mean, variance, and density function [29]. 

3.3|Student’s Distribution 

Student or T-student distribution is utilized when financial time series have fat tails. The T-student 

distribution corresponds to the normal distribution when the degree of freedom is infinite [30]. 

To define the orders of the model, this process is made by considering the AC and the PAC for each case 

Table 3. Regarding the AC and the PAC for the data, 

Table 3. The correlogram of date. 

 

  

  

  

 

 

 

  

 

The best model will be chosen based on the outputs of this analysis. However, to increase the accuracy of the 

analysis, the information criteria have been considered. Table 4 depicts each case, which presents the lowest 

value of information criteria as the best one. 

 

Table 4. Information criteria. 

 

 

 

 

dt−1 = {
1,          if   εt−1

2 < 0,

0,         if   εt−1
2 ≥ 0.

                             

log σ̂t
2 = α0 + ∑ α |

εt−1

σt−1
|

p

i=1

+ ∑ γk

r

k=1

ut−k

σt−k
+ ∑ βj log σ̂t−j

2

q

j=1

. (3) 

Auto Correlation Partial Correlation  AC PAC Q-State Prop 

  1 0.130 0.130 32.606 0.000 

2 -0.016 -0.033 33.071 0.000 

3 0.083 0.091 46.393 0.000 

4 0.068 0.046 55.402 0.000 

5 -0.029 -0.040 57.030 0.000 

6 -0.025 -0.020 58.247 0.000 

7 -0.030 -0.036 59.959 0.000 

8 0.011 0.021 60.178 0.000 

Model LOGL AIC* BIC HQ 

(4,3)(0,0) 2160.007319 -2.227869 -2.201928 -2.218327 

(0,4)(0,0) 2155.349385 -2.226152 -2.208858 -2.219790 

(1,4)(0,0) 2156.269186 -2.226069 -2.205892 -2.218647 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.130 0.130 32.606 0.000
2 -0.016 -0.033 33.071 0.000
3 0.083 0.091 46.393 0.000
4 0.068 0.046 55.402 0.000
5 -0.029 -0.040 57.030 0.000
6 -0.025 -0.020 58.247 0.000
7 -0.030 -0.036 59.959 0.000
8 0.011 0.021 60.178 0.000

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.130 0.130 32.606 0.000
2 -0.016 -0.033 33.071 0.000
3 0.083 0.091 46.393 0.000
4 0.068 0.046 55.402 0.000
5 -0.029 -0.040 57.030 0.000
6 -0.025 -0.020 58.247 0.000
7 -0.030 -0.036 59.959 0.000
8 0.011 0.021 60.178 0.000
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  Table 4. Continued. 

 
 

  

 

 

 

  

  

The order of ACs is four, and PACs is three. In this regard, (4,3) has the lowest value of information criteria, 

and all the inverse roots lie inside the unit circle Fig. 5. The residuals, shown in Table 5, are white noise and a 

positive point in the ARIMA (4,1,3) because there is no information in the residuals. Therefore, the ARIMA 

(4,1,3) has satisfied the stability conditions, and the error terms are white noise.  

Fig. 4. Inverse roots of AR/MA polynomial(s). 

 

Table 5. The correlogram of residuals in ARIMA (4,1,3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

To examine conditional heteroscedasticity, the null hypothesis of heteroskedasticity is rejected by ProbProb. 

<0.05. Table 6 presents the data as not being homoscedastic. Thus, it has to model the volatility for the data. 

Table 6. ARCH test results–Evidence of heteroskedasticity in the model. 

 

 

  

The Garch models will be calculated to compare the results and examine fluctuations in Tables 7-9. 

Model LOGL AIC* BIC HQ 

(4,4)(0,0) 2158.627311 -2.225404 -2.196580 -2.214802 

(3,2)(0,0) 2155.519179 -2.225292 -2.205115 -2.217870 

(4,1)(0,0) 2155.347538 -2.225114 -2.204938 -2.217692 

(2,4)(0,0) 2156.336811 -2.225103 -2.2002044 -2.216621 

(4,0)(0,0) 2153.911419 -2.224662 -2.207368 -2.218301 

(3,4)(0,0) 2156.677029 -2.224420 -2.198478 -2.214878 

(2,3)(0,0) 2154.634665 -2.224375 -2.204199 -2.216954 

(4,2)(0,0) 21.55.531476 -2.224269 -2.201210 -2.215787 

Autocorrelation Partial Correlation 

  

Heteroskedasticity Test: ARCH 

F-statistic 422.5478 Prob. F(1,1928) 0.0000 

Obs*R-squared 346.9477 Prob. chi-squre(1) 0.0000 
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  Table 7. GARCH Model Estimations – Estimated parameters of GARCH, GJR-GARCH, and EGARCH 

models under normal and t-student distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Variance Equation Estimations–Estimated variance equations for GARCH, GJR-GARCH, and 

EGARCH models with different distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Model Selection Criteria – Comparison of GARCH models based on Akaike, Schwarz, and 

Hannan-Quinn information criteria. 

 

Mean Equation Distribution Models    
Garch       Prob GJR-Garch      Prob EGarch       Prob 

AR(1) 

AR(2) 

AR(3) 

AR(4) 

MA(1) 

MA(2) 

MA(3) 

Normal 

 

 

-0.3628  

-0.5885  

-0.6744  

0.1759  

0.5750  

0.6885  

0.8216  

(0.2755) 

(0.0012) 

(0.0477) 

(0.0316) 

(0.0801) 

(0.0000) 

(0.0069) 

1.2355           

-0.3869          

-0.3655          

0.0511           

-1.0202          

0.1376  

0.4650  

(0.0013) 

(0.5668) 

(0.4524) 

(0.5382) 

(0.0074) 

(0.8139) 

(0.1871) 

0.3984              

-0.5605             

-0.4607             

 0.0931             

-0.2014             

 0.5079             

 0.6013             

(0.3808) 

(0.2228) 

(0.3751) 

(0.3505) 

(0.6546) 

(0.1611) 

(0.1788)                                

AR(1) 

AR(2) 

AR(3) 

AR(4) 

MA(1) 

MA(2) 

MA(3) 

T-student 

 

 

-0.4324      

0.8763       

0.6114       

-0.1588      

0.6577       

-0.7946      

-0.8090      

(0.0001) 

(0.0000) 

(0.0000) 

(0.0000) 

(0.0000) 

(0.0000) 

(0.0000) 

-0.4318   

0.8730   

0.6123   

-0.1578    

0.6564  

-0.7936    

-0.8096    

(0.0001) 

(0.0000) 

(0.0000) 

(0.0000) 

(0.0000) 

(0.0000) 

(0.0000) 

0.3363              

0.4889              

0.2033              

-0.0962             

-0.1186             

-0.5670             

-0.2815             

(0.5516) 

(0.1149) 

(0.6067) 

(0.2433) 

(0.8340) 

(0.0097) 

(0.5230) 

Model Distribution Variance Equation 

Garch Normal 

Prob 

σ̂2
t = 5.897 + 0.165*εt−1

2 + 0.865*σj−1
2  

(0.0317)     (0.0000)              (0.0000) 

T-student 

Prob 

σ̂2
t = 8.335 + 0.128*εt−1

2 + 0.885*σj−1
2  

(0.0397)      (0.0000)             (0.0000) 

GJRGarch Normal 

Prob 

σ̂2
t = 7.812 + 0.251*εt−1

2 - 0.166*εt−1
2 *dt−1+ 0.865*σj−1

2  

(0.0036)      (0.0000)              (0.0000)                  (0.0000) 

T-student 

Prob  

σ̂2
t =  9.399 + 0.174*εt−1

2 - 0.099*εt−1
2 *dt−1+ 0.887*σj−1

2  

(0.0184)      (0.0000)             (0.0000)                   (0.0000) 

EGarch Normal 

 

Prob 

log σ̂2
t = -0.238 + 0.262* หεt−1 ห

ටσj−1
2

 + 0.071* εt−1

ටσj−1
2

   +  0.992*Log(σj−1
2 ) 

(0.0000)      (0.0000)              (0.0000)            (0.0000) 

T-student 

 

Prob  

log σ̂2
t = -0.233 + 0.232*

หεt−1 ห

ටσj−1
2

 + 0.061*
εt−1

ටσj−1
2

 + 0.990*Log(σj−1
2 ) 

(0.0000)      (0.0000)             (0.0003)              (0.0000) 

Model Distribution Information Criteria Maximum Likelihood 

  Akaike                   Schwarz                     Hannan-Quinn  

Garch Normal -3.036588 -3.004828 -3.024905 2936.753 

T-student -3.142173 -3.107526 -3.129427 3039.483 

GJRGarch Normal -3.056684 -3.022038 -3.043939 2957.115 

T-student -3.149621 -3.112087 -3.135813 3047.660 

EGarch Normal -3.060373 -3.025726 -3.047628 2960.670 

T-student -3.151873 -3.114339 -3.138065 3049.829 
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  3.4|Machine Learning Models 

3.4.1|Random forest 

Random forest method based on decision trees is an ensemble learning method for classification and 

regression [31]. A random forest tree, which is based on a structure consisting of many decision trees, grows 

and aggregates regression trees for the predictions of each tree. This method is suitable for overfitting decision 

trees in the training set. Random forest has one stage more than bagging, which usually causes the 

performance of random forest to be better than that of the decision tree. The method utilizes bagging and 

random subspace to decrease the variance of the model [32]. The combination of bagging and random 

subspace helps to generate appropriate diversity in the model. In this regard, the random subspace method 

can increase diversity among trees by restricting trees to work on different random subsets of the predictor 

space, and bagging can examine additional diversity by constructing each tree in the forest from a bootstrap 

dataset sample.  

3.4.2|Ridge regression 

The least square method aims to estimate variables when the relation between variables is linear. However, 

the least square estimates have high variance, which can become overfitting in the model. A small change in 

the training data can generate a large change in the coefficients [33]. Ridge regression estimates the coefficients 

in linear models where the independent variables are correlated [34]. This method can control the extent of 

coefficients by imposing a penalty for the error function. The penalty is a trade-off between the variance and 

bias that reduces the effects of multicollinearity and variance to increase prediction accuracy in the model.   

3.4.3|Support vector regression 

Support Vector Regression (SVR) is a supervised machine-learning algorithm based on the Support Vector 

Machine [35]. This algorithm depicts sample data as points in space, and the points are separated using a 

hyperplane. Due to some characteristics of SVR, this method can be used for incomplete data and outliers 

[36]. The algorithm is a method to estimate a function that is mapped from an input to an output based on 

training data. The SVR considers kernel functions, which calculate the similarity among two observations in 

non-linear problems. SVR aims to map the vectors of regressor x onto a high-dimensional space using some 

fixed transformation. 

3.4.4|Elastic net 

The elastic net method is a hybrid regression that utilizes penalties to improve the regularization of statistical 

models. Regularization contributes to solving the overfitting problem in the model. This procedure combines 

the lasso and ridge regression methods by learning to reduce loss function [37]. In this regard, two stages 

contain the lasso and regression algorithms to find the elastic net estimator. If first finds the ridge regression 

coefficients, perform the second step by utilizing a lasso sort of shrinkage of the coefficients. Also, the elastic 

net determines models that variable selection can be too dependent on data and unstable.   

3.4.5|Prediction performance metrics 

To evaluate prediction accuracy, the Root Mean Square Error (RMSE) scale is utilized for examination, which 

is calculated as follows;   

where ŷi indicates the predicted value, and yi depicts the actual value.  

4|Results  

Table 8 indicates all the parameters are statistically significant in Garch, GJRGarch, and EGarch models. In 

other words, the parameters significantly differ from zero, highlighting the models' high validity. The best 

RMSE = √(1/n) ∑ (yi−ŷi)2n
i=1 ,   
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  conditional volatility model is EGarch because EGarch indicates significant parameters and has the smallest 

information criteria while having the biggest maximum likelihood Table 8 and Table 9. Also, the γ coefficient 

in the EGarch indicates the leverage effect. It shows the news effect in the model, and γ > 0 depicts that 

positive news is more destabilizing than negative news. The EGarch is exponential Garch; the parameters can 

be negative and positive. However, the residuals of EGarch with normal and T-student distribution have an 

Arch effect; hence, this model is refused Table 12 and Table 13. Also, all estimations in the mean equation are 

insignificant for EGarch Table 7.  

The γ coefficient in the GJRGarch is not equal to zero (γ ≠ 0) with the normal and the T-student distribution. 

This means that the impact of news on the series is asymmetric. This model is accepted because this model 

has no Arch effect in the residuals in both the normal distribution Table 10 and the T-student distribution 

Table 11. However, the normal-GJRGarch is rejected for the mean equation because its coefficient is 

insignificant. All coefficients are insignificant except Garch with T-student distribution and GJRGarch with 

T-student distribution in Table 7. Therefore, the mean equation is statistically significant in T-student-Garch 

and T-student-GJRGarch. 

In the Garch model, whether the normal distribution is normal or not, all parameters are significant and 

positive. Also, the Garch model has no Arch effect Table 14 and Table 15. The T-student Garch model is 

accepted because the mean equation is just as significant in the T-student-Garch model.  

 Table 10. ARCH LM test for GJRgarch–normal distribution. 

 

 

Table 11. ARCH LM test for GJRgarch–t-student distribution. 

 

    

Table 12. ARCH LM test for egarch-normal distribution. 

 

 

 Table 13. ARCH LM test for egarch – t-student distribution. 

 

 

 Table 14. ARCH LM test for garch – normal distribution. 

 

 

Table 15. ARCH LM test for garch – t-student distribution. 

 

 

All coefficients of both T-student-Garch and T-student-GJRGarch in the mean equation are significant. 

Therefore, Garch(1,1) and GJRGarch(1,1) are the best way to model the conditional fluctuations of 

conventional gasoline in the case of the T-student distribution. Table 16 depicts the hybridized machine 

learning with Garch and GJRGarch; the RMSE is considered a criterion. The RMSE criterion to predict the 

seven-step-ahead in the primary model (Garch and GJRGarch) is equal. This means that the results are 

identical when forecasting seven-ahead in two models. However, with machine learning, the results are 

changed, and the criterion can decrease. In other words, machine learning can better forecast seven-step-

F-Statistic 0.884100 Prob. F (1,1924) 0.3472 
Obs*Rsquard 0.884613 Prob.chi-square(1) 0.3469 

F-Statistic 1.316068 Prob. F (1,1924) 0.2514 
Obs*Rsquard 1.316535 Prob.chi-square(1) 0.2512 

F-Statistic 2.877158 Prob. F (1,1924) 0.0900 
Obs*Rsquard 2.875845 Prob.chi-square(1) 0.0899 

F-Statistic 3.629835 Prob. F (1,1924) 0.0569 
Obs*Rsquard 3.626766 Prob.chi-square(1) 0.0569 

F-Statistic 0.853707 Prob. F (1,1924) 0.3556 
Obs*Rsquard 0.854216 Prob.chi-square(1) 0.3554 

F-Statistic 1.381600 Prob. F (1,1924) 0.2400 
Obs*Rsquard 1.382044 Prob.chi-square(1) 0.2398 
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  ahead. The criterion to evaluate random forest, ridge regression, SVR, and elastic-net is RMSE, the slightest 

RMSE of ridge regression in the GJRGarch model. The ridge regression is the best to forecast conditional 

variance than the primary model and other machine learning algorithms (Table 16). In this regard; the T-

student-GJRGarch-ridge regression model has the most accuracy among algorithms to predict seven-step-

ahead. 

Table 16. Hybrid ML with GARCH & GJR-GARCH. 

 

 

 

 

 

Table 17. Index of notations and abbreviations. 

 

 

 

  

  

  

 

5|Conclusion  

The trend of this search is to evaluate gasoline price volatility based on different Garch models and machine 

learning methods. This study presents an effective model to predict volatility. Seven of the hybrid models 

were performed in several stages. In the first stage, comparative research was conducted on fluctuations based 

on different Garch models with two distributions, Garch, EGarch, and GJRGarch. All models were based 

on T-student and normal distribution. All the Garch models considered are evaluated to predict fluctuations. 

Two models were selected based on economic theories, which were significant to estimating all parameters, 

including Garch and GJRGarch, based on T-student distribution. These models can better forecast volatility 

than other models. In the second stage, the mentioned models were utilized to predict the seven-step-ahead. 

The rose scale to predict the seven-step-ahead was 0.08052, which means the scale value was equal in the two 

models. In the next stage, the machine learning algorithms were used to predict the horizon, which was seven 

steps more precisely. Conditional variance was entered as an input to machine learning algorithms. The 

purpose of entering input into algorithms is to analyze volatility. The RMSE scale was also examined in all 

algorithms, and the scale was the slightest in all algorithms except the support machine vector. There were 

more RMSE metrics in SVR than in the primary model and other algorithms. The RMSE metrics in ridge 

regression were less than other algorithms and the primary model with a close look. The scale of ridge 

regression in GJRGarh was 0.01475, which was the slightest in all. Therefore, the hybrid model ridge 

regression-GJRGarch based on T-student distribution can better decrease prediction error to forecast 

volatility for seven-step-ahead. In other words, the proposed model is more accurate than another model and 

algorithms to predict the seven-step-ahead. Other Garch models based on different distributions and 

algorithms in machine learning can be investigated to evaluate volatility in future research.  

 Ethical statement  

I. This material is the authors' original work, which has not been previously published elsewhere. 

II. The paper is not currently being considered for publication elsewhere. 

RMSE  Model Distribution Garch GJRGarch 

 Machine learning models 

 

Random forest t-student 0.01751 0.01541 

 Ridge regression t-student 0.01695 0.01475 

 SVR t-student 0.08862 0.08901 

 Elastic-net t-student 0.01853 0.01612 

 Main model t-student 0.08052 0.08052 

AC                           Autocorrelation 

ADF   Augmented-dickey-fuller 

AIC                          Akaike information 

AR                          Autoregressive 

ARCH                      Autoregressive conditional heteroskedasticity 

MA                         Moving average 

PAC                        Partial correlation 

Prob                       P-value 
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  III. The paper reflects the authors' research and analysis wholly and truthfully. 

IV. The results are appropriately placed in prior and existing research context. 

V. All sources used are correctly disclosed (correct citation).  

VI. All authors have been personally and actively involved in substantial work leading to the paper, and will 

take public responsibility for its content. 
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